Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 681-689, 2023.
Article in Chinese | WPRIM | ID: wpr-986945

ABSTRACT

Objective: To investigate whether tanshinone ⅡA can protect the apoptosis of mice cochlear pericytes induced by high glucose and its specific protective mechanism, so as to provide experimental evidence for the prevention and treatment of diabetic hearing loss. Methods: C57BL/6J male mice were used to prepare type 2 diabetes model, which were divided into normal (NG) group, diabetic (DM) group, diabetic+tanshinone ⅡA (HG+tanshinone ⅡA) group and tanshinone ⅡA group. Each group had 10 animals. Primary cochlear pericytes were divided into NG group, HG group (high glucose 35 mmol/L), HG+tanshinone ⅡA (1, 3, 5 μmol/L) group, HG+Tanshinone ⅡA+LY294002 (PI3K/AKT pathway inhibitor) group, LY294002 group, tanshinone ⅡA group and DMSO group. Auditory brainstem response (ABR) was used to measure hearing threshold. Evans blue was used to detect the permeability of blood labyrinth barrier in each group. TBA methods were used to detect oxidative stress levels in various organs of mice. Morphological changes of stria vascularis were observed by hematoxylin-eosin staining (HE). Evans blue was used to detect the vascular labyrinth barrier permeability in cochlea. The expression of apoptosis protein in stria vascularis pericytes was observed by immunofluorescence. Pericytes apoptosis rate was observed by flow cytometry. DCFH-DA was combined with flow cytometry to detect intracellular ROS content, and Western blot was used to detect the expression of apoptotic proteins (Cleaved-caspase3, Bax), anti-apoptotic proteins (BCL-2) and pathway proteins (PI3K, p-PI3K, AKT, p-AKT). SPSS software was used for statistical analysis. Independent sample t test was performed, and P<0.05 was considered statistically significant. Results: Animal experiments: Tanshinone ⅡA decreased the hearing threshold of DM group [(35.0±3.5) dB SPL vs. (55.3±8.1) dB SPL] (t=4.899, P<0.01), decreased the oxidative stress level in cochlea (t=4.384, P<0.05), improved the structure disorder, atrophy of cochlea vascular lines, vacuole increased phenomenon. Tanshinone ⅡA alleviated the increased permeability of the blood labyrinth barrier [Evans blue leakage (6.84±0.27) AU vs. (8.59±0.85) AU] in the cochlea of DM mice (t=2.770, P<0.05), reversed the apoptotic protein: Caspase3 (t=4.956, P<0.01) and Bax (t=4.388, P<0.05) in cochlear vascularis. Cell experiments: Tanshinone ⅡA decreased intracellular ROS content in a concentration-dependent way (t=3.569, P<0.05; t=4.772, P<0.01; t=7.494, P<0.01); Tanshinone ⅡA decreased apoptosis rate and apoptotic protein, and increased the expression of anti-apoptotic protein, p-PI3K/PI3K and p-AKT/AKT in concentration-dependent manner (all P values<0.05); LY294002 reversed the protective effect of tanshinone ⅡA on pericytes apoptosis (all P values<0.05). Conclusion: Tanshinone ⅡA can inhibit the apoptosis of cochlear pericytes induced by high glucose by reducing oxidative stress level and activating PI3K/AKT signaling pathway under high glucose environment, thus playing a protective role in diabetic hearing loss.


Subject(s)
Animals , Male , Mice , Apoptosis , bcl-2-Associated X Protein , Diabetes Mellitus, Type 2 , Evans Blue , Glucose , Hearing Loss , Mice, Inbred C57BL , Pericytes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
2.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 1185-1193, 2021.
Article in Chinese | WPRIM | ID: wpr-942597

ABSTRACT

Objective: To study the changes in the permeability of the blood labyrinth barrier of the aging cochlea in mice, and to establish a non-contact co-culture model of endothelial cells (EC) and pericytes (PC) to furtherly investigate the cochlear stria vascularis microvascular pericytes impact on the permeability of endothelial cells. Methods: C57BL/6J mice were divided into two groups, three months old as young group, 12 months old as senile group. Cell experiment was divided into four groups, EC group, EC+PC co-culture group, D-gal+EC group and D-gal+EC+PC co-culture group. Auditory brainstem response (auditory brain response, ABR) was used to detect the auditory function of the two groups of mice. Evans blue staining was applied to detect the permeability of the cochlear blood labyrinth barrier of the two groups of mice. Transmission electron microscopy was used to observe the ultrastructure of blood labyrinth barrier endothelial cells, pericytes and tight junctions in the two groups of mice. Immunohistochemistry was used to detect the expression levels of tight junction proteins in the stria vascularis of the cochlea of the two groups of mice. Transwell chamber was used to detect the permeability of endothelial cells. Western blot and immunofluorescence technology were used to detect the expression level of tight junction protein on endothelial cells. SPSS 20.0 software was used to analyze the data. Results: Compared with the young group, the ABR threshold of the aging group was significantly increased, the latency of wave I was prolonged (t=10.25, P<0.01;t=5.61, P<0.05), the permeability of the cochlear blood labyrinth barrier was increased and the expression of tight junction protein on the vascular stria was decreased (P<0.05). The cochlear ultrastructure showed that the cochlear vascular stria microvascular lumen was deformed, the basement membrane thickened and the tight junction gap between endothelium enlarged. The positive rate of ECs and PCs in primary culture was more than 95%. The cells induced by 15 g/L D-gal were determined to be senescent cells. Compared with EC group, the expression of tight junction protein in endothelial cells of D-gal+EC group decreased(t=7.42,P<0.01;t=13.19,P<0.05)and the permeability increased (t=11.17, P<0.01). In the co-culture group, the expression of tight junction protein between endothelial cells in EC+PC co-culture group and D-gal+EC+PC co-culture group increased and the permeability decreased. Conclusions: In aging mice, the permeability of cochlear blood labyrinth barrier will increase and the level of tight junction protein will decrease; in aging state, cochlear vascular stria microvascular pericytes may affect endothelial cell permeability by regulating the expression of tight junction protein.


Subject(s)
Animals , Mice , Cochlea , Endothelial Cells , Mice, Inbred C57BL , Pericytes , Permeability , Stria Vascularis , Tight Junctions
3.
Chinese Journal of Contemporary Pediatrics ; (12): 1124-1130, 2019.
Article in Chinese | WPRIM | ID: wpr-775044

ABSTRACT

OBJECTIVE@#To investigate the effects of calcium-sensitive receptors (CaSR) on the expression of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) and cortisol concentration in a neonatal mouse model of persistent pulmonary hypertension (PPH).@*METHODS@#Fifty-six newborn C57BL/6 mice were randomly divided into a control group (n=14), a PPH group (n=14), an agonist group (n=14), and an inhibitor group (n=14). The mice in the PPH, agonist, and inhibitor groups were exposed to a 12% oxygen concentration, and the agonist group and inhibitor group were given CaSR agonist (GdCl3, 16 mg/kg) and CaSR antagonist (NPS2390, 1 mg/kg) intraperitoneally once a day, respectively. The mice in control group were exposed to air, and then injected with an equal volume of normal saline as those in the PPH group every day. All mice were treated for 14 days. Morphological examination of heart and lung tissues was performed using hematoxylin-eosin staining. The expression levels of 11β-HSD2 mRNA and 11β-HSD2 protein in lung tissues were measured by qRT-PCR and Western blot respectively. Brain natriuretic peptide (BNP) and cortisol levels in lung tissues were determined using ELISA.@*RESULTS@#Compared with the control group, the PPH group had significantly increased pulmonary artery wall thickness (WT%), ratio of right to left ventricular thickness (RV/LV), alveolar mean linear intercept, and BNP concentration and a significantly reduced radial alveolar count (P<0.05); compared with the PPH group, the agonist group showed significant increases in WT% and BNP concentration, while the inhibitor group showed significant reductions in the two indicators (P<0.05). Compared with the control group, the PPH group showed significant reductions in the expression levels of 11β-HSD2 mRNA and 11β-HSD2 protein, but a significant increase in cortisol concentration (P<0.05); compared with the PPH group, the agonist group had significantly lower expression levels of 11β-HSD2 mRNA and 11β-HSD2 protein, but a significant higher cortisol concentration, while the inhibitor group showed opposite changes in these indicators (P<0.05).@*CONCLUSIONS@#CaSR may control the development and progression of PPH in newborn mice by regulating the expression of 11β-HSD2 and cortisol concentration.


Subject(s)
Animals , Mice , 11-beta-Hydroxysteroid Dehydrogenase Type 2 , Animals, Newborn , Calcium , Hydrocortisone , Hypertension, Pulmonary , Mice, Inbred C57BL , Receptors, Calcium-Sensing
4.
Chinese Journal of Contemporary Pediatrics ; (12): 189-194, 2019.
Article in Chinese | WPRIM | ID: wpr-774103

ABSTRACT

OBJECTIVE@#To study the effect of calcium-sensitive receptors (CaSR) on the expression of endothelial nitric oxide synthase (eNOS) and the concentration of nitric oxide (NO) in a neonatal mouse model of persistent pulmonary hypertension (PPH).@*METHODS@#Eighty neonatal C57BL/6 mice were randomly divided into control, PPH, agonist and antagonist groups. The control group was exposed to air, and the other three groups were exposed to 12% oxygen. The agonist and antagonist groups were intraperitoneally injected with a CaSR agonist (GdCl 16 mg/kg) and a CaSR antagonist (NPS2390, 1 mg/kg), respectively, while the PPH and control groups were intraperitoneally injected with normal saline instead. All mice were treated for 14 days. Alveolar development and pulmonary vessels were assessed by hematoxylin-eosin staining. The protein and mRNA expression of eNOS and its localization in lung tissues were determined by Western blot, qRT-PCR and immunohistochemistry. The levels of brain natriuretic peptide (BNP) and NO in lung homogenate were determined using ELISA.@*RESULTS@#Compared with the control group, the PPH and agonist groups showed significant increases in alveolar mean linear intercept, the percent wall thickness of pulmonary arterioles, right to left ventricular wall thickness ratio (RV/LV) and BNP concentration, but a significant reduction in radial alveolar count (P<0.05). The antagonist group had significant improvements in all the above indices except RV/LV compared with the PPH and agonist groups (P<0.05). Compared with those in the control group, the protein and mRNA expression of eNOS and NO concentration were significantly increased in the PPH group and increased more significantly in the agonist group, but were significantly reduced in the antagonist group (P<0.05).@*CONCLUSIONS@#CaSR plays an important role in the development of PPH in neonatal mice, possibly by increasing eNOS expression and NO concentration.


Subject(s)
Animals , Mice , Animals, Newborn , Calcium , Hypertension, Pulmonary , Hypoxia , Mice, Inbred C57BL , Nitric Oxide , Nitric Oxide Synthase Type III , Receptors, Calcium-Sensing
5.
Acta Physiologica Sinica ; (6): 395-404, 2019.
Article in Chinese | WPRIM | ID: wpr-777174

ABSTRACT

The present study was designed to examine whether Ramipril (an inhibitor of angiotensin-converting enzyme) affected spontaneous hypertension-induced injury of cerebral artery by regulating connexin 43 (Cx43) expression. Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were randomly divided into WKY, WKY + Ramipril, SHR, and SHR + Ramipril groups (n = 8). The arterial pressure was monitored by the tail-cuff method, and vascular function in basilar arteries was examined by pressure myography. Hematoxylin-eosin (HE) staining was used to show vascular remodeling. The expression and distribution of Cx43 was determined by using immunofluorescence and immunohistochemistry analysis. The protein and mRNA levels of Cx43 were examined by Western blot and real-time PCR analysis, respectively. The results showed that chronic Ramipril treatment significantly attenuated blood pressure elevation (P < 0.01, n = 8) and blood vessel wall thickness in SHR (P < 0.01, n = 8). The cerebral artery contraction rate in the SHR group was higher than that in the WKY group (P < 0.05, n = 8). The cerebral artery contraction rate in the SHR + Ramipril group was lower than that in the SHR group (P < 0.05, n = 8). Pretreatment with 2-APB (Cx43 non-specific blocker) or Gap26 (Cx43 specific blocker) significantly decreased the vasoconstriction rate, while pretreatment with AAP10 (Cx43 non-specific agonist) significantly increased the vasoconstriction in the SHR + Ramipril group (P < 0.05, n = 8). In addition, the expression of Cx43 mRNA and protein in cerebral arteries of SHR group was higher than that of WKY group (P < 0.05, n = 8). The mRNA and protein expression of Cx43 in cerebral arteries of SHR + Ramipril group was significantly lower than that of SHR group (P < 0.05, n = 8). These results suggest that Ramipril can down-regulate the expression of Cx43 mRNA and protein in cerebral arterial cells of SHR, lower blood pressure, promote vasodilation, and improve arterial damage and vascular dysfunction caused by hypertension.


Subject(s)
Animals , Rats , Blood Pressure , Cerebral Arteries , Metabolism , Connexin 43 , Metabolism , Hypertension , Drug Therapy , Ramipril , Pharmacology , Random Allocation , Rats, Inbred SHR , Rats, Inbred WKY , Vascular Remodeling
6.
Acta Physiologica Sinica ; (6): 527-536, 2019.
Article in Chinese | WPRIM | ID: wpr-777159

ABSTRACT

The aim of this study was to investigate whether G protein-coupled estrogen receptor (GPER) could alleviate hippocampal neuron injury under cerebral ischemia-reperfusion injury (CIRI) by acting on endoplasmic reticulum stress (ERS). The CIRI animal model was established by middle cerebral artery occlusion (MCAO). Female ovariectomized (OVX) Sprague-Dawley (SD) female rats were randomly divided into 4 groups: control, ischemia-reperfusion injury (MCAO), vehicle (MCAO+DMSO), and GPER-specific agonist G1 (MCAO+G1) groups. The neurobehavioral score was assessed by the Longa score method, the morphological changes of the neurons were observed by the Nissl staining, the cerebral infarction was detected by the TTC staining, and the neural apoptosis in the hippocampal CA1 region was detected by TUNEL staining. The distribution and expression of GRP78 (78 kDa glucose-regulated protein 78) in the hippocampal CA1 region were observed by immunofluorescent staining. The protein expression levels of GRP78, Caspase-12, CHOP and Caspase-3 were detected by Western blot, and the mRNA expression levels of GRP78, Caspase-12, and CHOP were detected by the real-time PCR. The results showed that the neurobehavioral score, cerebral infarct volume, cellular apoptosis index, as well as GRP78, Caspase-12 and CHOP protein and mRNA expression levels in the MCAO group were significantly higher than those of control group. And G1 reversed the above-mentioned changes in the MCAO+G1 group. These results suggest that the activation of GPER can decrease the apoptosis of hippocampal neurons and relieve CIRI, and its mechanism may involve the inhibition of ERS.


Subject(s)
Animals , Female , Rats , Apoptosis , Brain Ischemia , CA1 Region, Hippocampal , Cell Biology , Caspase 12 , Metabolism , Caspase 3 , Metabolism , Endoplasmic Reticulum Stress , Heat-Shock Proteins , Metabolism , Neurons , Cell Biology , Random Allocation , Rats, Sprague-Dawley , Receptors, Estrogen , Physiology , Receptors, G-Protein-Coupled , Reperfusion Injury , Transcription Factor CHOP , Metabolism
7.
Chinese Journal of Contemporary Pediatrics ; (12): 208-214, 2017.
Article in Chinese | WPRIM | ID: wpr-351373

ABSTRACT

<p><b>OBJECTIVE</b>To study the effect of calcium-sensing receptor (CaSR) agonists and antagonists on the expression of CaSR in neonatal mice with persistent pulmonary hypertension (PPHN), and to clarify the role of CaSR in neonatal mice with PPHN.</p><p><b>METHODS</b>Forty-nine neonatal mice were randomly divided into four groups: control (n=10), hypoxia (PPHN; n=11), agonist (n=13), and antagonist (n=15). The mice in the PPHN, agonist, and antagonist groups were exposed to an oxygen concentration of 12%, and those in the control group were exposed to the air. The mice in the agonist and antagonist groups were intraperitoneally injected with gadolinium chloride (16 mg/kg) and NPS2390 (1 mg/kg) respectively once daily. Those in the PPHN and the control groups were given normal saline daily. All the mice were treated for 14 consecutive days. Hematoxylin and eosin staining and immunohistochemistry were used to observe the changes in pulmonary vessels. Laser confocal microscopy was used to observe the site of CaSR expression and measure its content in lung tissues. qRT-PCR and Western blot were used to measure the mRNA and protein expression of CaSR in lung tissues.</p><p><b>RESULTS</b>Compared with the control group, the PPHN group had significant increases in the pulmonary small artery wall thickness and the ratio of right to left ventricular wall thickness (P<0.05), which suggested that the model was successfully prepared. Compared with the control group, the PPHN group had a significant increase in the mRNA and protein expression of CaSR (P<0.05), and the agonist group had a significantly greater increase (P<0.05); the antagonist group had a significant reduction in the mRNA and protein expression of CaSR (P<0.05).</p><p><b>CONCLUSIONS</b>CaSR may play an important role in the development of PPHN induced by hypoxia in neonatal mice.</p>


Subject(s)
Animals , Mice , Hypoxia , Lung , Pathology , Myocardium , Pathology , Persistent Fetal Circulation Syndrome , Pathology , Pulmonary Artery , Pathology , RNA, Messenger , Receptors, Calcium-Sensing , Genetics , Physiology
8.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 1-9, 2015.
Article in English | WPRIM | ID: wpr-636901

ABSTRACT

The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca(2+)-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

9.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 1-9, 2015.
Article in English | WPRIM | ID: wpr-331117

ABSTRACT

The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.


Subject(s)
Animals , Female , Male , Rats , Ganglia, Spinal , Physiology , Patch-Clamp Techniques , Protein Kinase C-epsilon , Metabolism , Rats, Sprague-Dawley , Receptors, GABA-A , Physiology , Signal Transduction , Substance P , Physiology
10.
Acta Physiologica Sinica ; (6): 329-334, 2015.
Article in Chinese | WPRIM | ID: wpr-255942

ABSTRACT

The purpose of the present study is to investigate the effect of isoliquiritigenin (ISL) on the cerebral basilar artery in spontaneously hypertensive rats (SHR). The change of SHR systolic pressure was measured by tail artery pressure measurement instrument before and after ISL intervention. After perfusion with 1 × 10(-5) mol/L phenylephrine (PE), 1 × 10(-5) mol/L PE + 1 × 10(-4) mol/L ISL and 1 × 10(-5) mol/L PE, the diameter of the cerebral basilar artery separated from SHR was measured by pressure myograph. The current of large-conductance calcium-activated potassium (BKCa) channel of SHR single vascular smooth muscle cell (VSMC) was recorded by whole-cell patch-clamp technique and the cGMP levels of basilar artery was evaluated by ELISA. The results showed that 1) after intervention with ISL for 14 days, the systolic pressure of SHR was decreased from (218.3 ± 1.6) mmHg to (119.2 ± 1.9) mmHg (P < 0.01), but there was no difference in systolic pressure between ISL-treated SHR and Wistar-Kyoto (WKY) rat; 2) 1 × 10(-4) mol/L ISL relaxed the SHR cerebral basilar artery (P < 0.01); 3) ISL significantly increased the outward current density of VSMC from SHR cerebral basilar artery (P < 0.01, n = 6), and the effect could be reversed by 1 × 10(-3) mol/L TEA (a BKCa channel inhibitor), but 3 × 10(-4) mol/L 4-AP (a Kv channel inhibitor) had no effect on the enhanced current density induced by ISL in VSMC; 4) 1 × 10(-5) mol/L Methylene blue (a sGC inhibitor) significantly inhibited the ISL-enhanced current density in VSMC (P < 0.05, n = 6); 5) ISL significantly increased the cGMP level of SHR basilar artery (P < 0.05, n = 6). The results suggest that the role of the ISL in relaxing the SHR cerebral basilar artery may be related to its effect in enhancing BKCa current by increasing the levels of cGMP in the VSMC.


Subject(s)
Animals , Rats , Basilar Artery , Blood Pressure , Cerebral Arteries , Chalcones , Pharmacology , Cyclic GMP , Physiology , Muscle, Smooth, Vascular , Cell Biology , Myocytes, Smooth Muscle , Physiology , Patch-Clamp Techniques , Potassium Channels, Calcium-Activated , Physiology , Rats, Inbred SHR , Rats, Inbred WKY , Systole
11.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 482-90, 2014.
Article in English | WPRIM | ID: wpr-636711

ABSTRACT

Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomotion in the cerebral basilar artery (BA) of Wistar rats. Pressure myograph video microscopy was used to study the changes in cerebral artery vessel diameter. The main results of this study were as follows: (1) The diameters of BA and middle cerebral artery (MCA) were 314.5±15.7 μm (n=15) and 233.3±10.1 μm (n=12) at 10 mmHg working pressure (P<0.05), respectively. Pressure-induced vasomotion occurred in BA (22/28, 78.6%), but not in MCA (4/31, 12.9%) from 0 to 70 mmHg working pressure. As is typical for vasomotion, the contractile phase of the response was more rapid than the relaxation phase; (2) The frequency of vasomotion response and the diameter were gradually increased in BA from 0 to 70 mmHg working pressure. The amplitude of the rhythmic contractions was relatively constant once stable conditions were achieved. The frequency of contractions was variable and the highest value was 16.7±4.7 (n=13) per 10 min at 60 mmHg working pressure; (3) The pressure-induced vasomotion of the isolated BA was attenuated by nifedipine, NFA, 18β-GA, TEA or in Ca(2+)-free medium. Nifedipine, NFA, 18β-GA or Ca(2+)-free medium not only dampened vasomotion, but also kept BA in relaxation state. In contrasts, TEA kept BA in contraction state. These results suggest that the pressure-induced vasomotion of the isolated BA results from an interaction between Ca(2+)-activated Cl(-) channels (CaCCs) currents and K(Ca) currents. We hypothesize that vasomotion of BA depends on the depolarizing of the vascular smooth muscle cells (VSMCs) to activate CaCCs. Depolarization in turn activates voltage-dependent Ca(2+) channels, synchronizing contractions of adjacent cells through influx of extracellular calcium and the flow of calcium through gap junctions. Subsequent calcium-induced calcium release from ryanodine-sensitive stores activates K(Ca) channels and hyperpolarizes VSMCs, which provides a negative feedback loop for regenerating the contractile cycle.

12.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 322-9, 2014.
Article in English | WPRIM | ID: wpr-636617

ABSTRACT

mRNAs of alpha-adrenoceptor (α-AR) subtypes are found in neurons in dorsal root ganglion (DRG) and change after peripheral nerve injury. In this study, the distribution of α-AR subtype proteins was studied in L5 DRG of normal rats and rats with chronic constriction injury of sciatic nerve (CCI). Using immunofluorescence technique, it was found that α1A-, α1B-, and α2A-AR proteins were expressed in large, medium, and small size neurons in normal DRG, and significantly increased in all size neurons 14 days after CCI. α1D- and α2C-AR was also expressed in all size neurons in normal DRG. However, α1D-AR was significantly increased and α2C-AR was decreased in small size neurons 14 days post CCI. α2B-AR neurons were not detectable in normal and CCI DRG. Co-expression of α1A- and α2A-AR in the same neuron was observed in normal DRG and increased post CCI. Collectively, these results indicated that there is distinct distribution of α-AR subtypes in DRG neurons, and the distribution and levels of expression of α-AR subtypes change differently after CCI. The up-regulation of α-AR subtypes in DRG neurons may play an important role in the process of generating and transmitting neuropathic pain.

13.
Acta Physiologica Sinica ; (6): 195-202, 2014.
Article in Chinese | WPRIM | ID: wpr-297501

ABSTRACT

The aim of the present study is to investigate the effect of 18β-glycyrrhetinic acid (18β-GA) on KCl- and PE-induced constriction of rat renal interlobar artery (RIA). Pressure myograph system was used to observe the constriction induced by KCl and PE (endothelial independent vasoconstrictor) in acutely separated RIA of Wistar rats with or without 18β-GA pretreatment. Whole-cell patch clamp recordings were used to observe the effect of 18β-GA on membrane input capacitance (C(input)), membrane input conductance (G(input)) or membrane input resistance (R(input)) of smooth muscle cells embedded in arteriole segment. The results showed that both KCl (30-100 mmol/L) and PE (0.1-30 μmol/L) induced contraction of RIA in a concentration-dependent way. After pretreatment with 18β-GA (100 μmol/L), KCl- or PE-induced constriction of RIA was significantly decreased. After application of 18β-GA (100 μmol/L), the C(input), G(input) and R(input) of the in situ smooth muscle cells were very close to those of dispersed single smooth muscle cells. These results suggest 18β-GA inhibits the contraction induced by KCl and PE, and the underlying mechanism may involve the inhibitory effect of 18β-GA on gap junction.


Subject(s)
Animals , Rats , Arteries , Constriction , Gap Junctions , Glycyrrhetinic Acid , Pharmacology , In Vitro Techniques , Myocytes, Smooth Muscle , Cell Biology , Patch-Clamp Techniques , Rats, Wistar
14.
Acta Physiologica Sinica ; (6): 289-294, 2014.
Article in Chinese | WPRIM | ID: wpr-297490

ABSTRACT

The purposes of this study were to investigate the effect of emodin on expression of BKCa channel β1 subunit in basilar artery smooth muscle cells (BASMCs) and electrophysiological characteristics of vascular smooth muscle cells in spontaneously hypertensive rats (SHR). Tail artery pressure measurement instrument was used to measure the change of SHR systolic blood pressure before and after emodin intervention. Single vascular smooth muscle cell was electrically recorded by whole-cell patch-clamp technique. Immunohistochemistry and Western blotting were used to study the distribution and expression of the BKCa channel β1 subunit. The results showed that emodin decreased blood pressure of SHR from (223 ± 16) mmHg to (127 ± 12) mmHg (P < 0.01). There was no difference of blood pressure between emodin-treated SHR and Wistar rats. Emodin significantly increased outward currents of smooth muscle cells in SHR (P < 0.05), and this effect could be reversed by specific inhibitor of BKCa channel, IbTX. Emodin also up-regulated BKCa channel β1 subunit expression in BASMCs. These results suggest that emodin relaxes cerebral basilar artery by enhancing BKCa current via increasing β1 subunit expression in BASMCs.


Subject(s)
Animals , Rats , Basilar Artery , Cell Biology , Blood Pressure , Emodin , Pharmacology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Metabolism , Myocytes, Smooth Muscle , Metabolism , Patch-Clamp Techniques , Rats, Inbred SHR , Rats, Wistar , Vasodilation , Vasodilator Agents , Pharmacology
15.
Acta Physiologica Sinica ; (6): 295-301, 2014.
Article in Chinese | WPRIM | ID: wpr-297489

ABSTRACT

This study investigated the role of calcium-activated Cl⁻ channels (CaCCs) in mediating vasomotor activity of cerebral basilar artery (BA) of Wistar rat. Pressure myograph was used to examine the changes in diameter of isolated BA to vasoactive reagents. The results showed that (1) The rate of pressure-induced vasomotor activity was 78.6% (n = 28) in BA from 0 to 100 mmHg working pressure. The contractile phase of the response was faster than the relaxation phase; (2) The amplitude of contraction was (62.6 ± 6.4) µm (n = 22), the frequency of contraction was variable and the highest value was 8.0 ± 2.3 per 5 min at 60 mmHg working pressure (n = 22); (3) The pressure-induced vasomotor activity of BA was markedly attenuated when Ca²⁺ was removed from medium; (4) The pressure-induced vasomotor activity was blocked by voltage dependent Ca²⁺ channel blocker nimodipine; (5) The pressure-induced vasomotor was inhibited by CaCC antagonists NFA and NPPB. These results suggest that the pressure-induced vasomotor activity of isolated BA is associated with Ca²⁺ influx that activates CaCCs.


Subject(s)
Animals , Rats , Basilar Artery , Physiology , Calcium , Physiology , Chloride Channels , Physiology , Rats, Wistar , Vasoconstriction , Vasodilation
16.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 322-329, 2014.
Article in English | WPRIM | ID: wpr-351077

ABSTRACT

mRNAs of alpha-adrenoceptor (α-AR) subtypes are found in neurons in dorsal root ganglion (DRG) and change after peripheral nerve injury. In this study, the distribution of α-AR subtype proteins was studied in L5 DRG of normal rats and rats with chronic constriction injury of sciatic nerve (CCI). Using immunofluorescence technique, it was found that α1A-, α1B-, and α2A-AR proteins were expressed in large, medium, and small size neurons in normal DRG, and significantly increased in all size neurons 14 days after CCI. α1D- and α2C-AR was also expressed in all size neurons in normal DRG. However, α1D-AR was significantly increased and α2C-AR was decreased in small size neurons 14 days post CCI. α2B-AR neurons were not detectable in normal and CCI DRG. Co-expression of α1A- and α2A-AR in the same neuron was observed in normal DRG and increased post CCI. Collectively, these results indicated that there is distinct distribution of α-AR subtypes in DRG neurons, and the distribution and levels of expression of α-AR subtypes change differently after CCI. The up-regulation of α-AR subtypes in DRG neurons may play an important role in the process of generating and transmitting neuropathic pain.


Subject(s)
Animals , Male , Rats , Cell Size , Chronic Disease , Constriction, Pathologic , Fluorescent Antibody Technique , Ganglia, Spinal , Metabolism , Pathology , Microscopy, Confocal , Neurons , Metabolism , Pathology , Pain Measurement , Methods , Pain Threshold , Protein Isoforms , Metabolism , Rats, Sprague-Dawley , Receptors, Adrenergic, alpha-1 , Metabolism , Receptors, Adrenergic, alpha-2 , Metabolism , Sciatic Nerve , Wounds and Injuries , General Surgery
17.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 482-490, 2014.
Article in English | WPRIM | ID: wpr-351052

ABSTRACT

Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomotion in the cerebral basilar artery (BA) of Wistar rats. Pressure myograph video microscopy was used to study the changes in cerebral artery vessel diameter. The main results of this study were as follows: (1) The diameters of BA and middle cerebral artery (MCA) were 314.5±15.7 μm (n=15) and 233.3±10.1 μm (n=12) at 10 mmHg working pressure (P<0.05), respectively. Pressure-induced vasomotion occurred in BA (22/28, 78.6%), but not in MCA (4/31, 12.9%) from 0 to 70 mmHg working pressure. As is typical for vasomotion, the contractile phase of the response was more rapid than the relaxation phase; (2) The frequency of vasomotion response and the diameter were gradually increased in BA from 0 to 70 mmHg working pressure. The amplitude of the rhythmic contractions was relatively constant once stable conditions were achieved. The frequency of contractions was variable and the highest value was 16.7±4.7 (n=13) per 10 min at 60 mmHg working pressure; (3) The pressure-induced vasomotion of the isolated BA was attenuated by nifedipine, NFA, 18β-GA, TEA or in Ca(2+)-free medium. Nifedipine, NFA, 18β-GA or Ca(2+)-free medium not only dampened vasomotion, but also kept BA in relaxation state. In contrasts, TEA kept BA in contraction state. These results suggest that the pressure-induced vasomotion of the isolated BA results from an interaction between Ca(2+)-activated Cl(-) channels (CaCCs) currents and K(Ca) currents. We hypothesize that vasomotion of BA depends on the depolarizing of the vascular smooth muscle cells (VSMCs) to activate CaCCs. Depolarization in turn activates voltage-dependent Ca(2+) channels, synchronizing contractions of adjacent cells through influx of extracellular calcium and the flow of calcium through gap junctions. Subsequent calcium-induced calcium release from ryanodine-sensitive stores activates K(Ca) channels and hyperpolarizes VSMCs, which provides a negative feedback loop for regenerating the contractile cycle.


Subject(s)
Animals , Female , Male , Rats , Basilar Artery , Cell Biology , Metabolism , Physiology , Chloride Channels , Metabolism , Membrane Potentials , Physiology , Muscle, Smooth, Vascular , Cell Biology , Metabolism , Myocytes, Smooth Muscle , Cell Biology , Metabolism , Potassium Channels, Calcium-Activated , Metabolism , Rats, Wistar , Vasoconstriction , Physiology , Vasodilation , Physiology
18.
Chinese Journal of Applied Physiology ; (6): 251-254, 2013.
Article in Chinese | WPRIM | ID: wpr-235387

ABSTRACT

<p><b>OBJECTIVE</b>This study compared Wistar rat with spontaneously hypertensive rat (SHR) on the electrophysiology and coupling force of the smooth muscle cells in the cerebral arteriolar segments and observe the influence of 18beta-glycyrrhetinic acid(18beta-GA) on the gap junctions between the arterial smooth muscle cells.</p><p><b>METHODS</b>The outer layer's connective tissue of the cerebral arteriolar segments was removed. Whole-cell patch clamp recordings were used to observe the 18beta-GA's impaction on the arteriolar segment membrane's input capacitance (C(input)), input conductance (G(input)) and input resistance (R(input)) of the smooth muscle cells.</p><p><b>RESULTS</b>(1) The C(input) and G(input) of the SHR arteriolar segment smooth muscle cells was much higher than the Wistar rats, there was significant difference (P < 0.05). (2) 18beta-GA concentration-dependently reduced C(input) and G(input) (or increase R(input)) on smooth muscle cells in arteriolar segment. IC50 of 18beta-GA suppression's G(input) of the Wistar rat and SHR were 1.7 and 2.0 micromol/L respectively, there was not significant difference (P > 0.05). After application of 18beta-GA concentration > or = 100 micrmol/L, the C(input), G(input) and R(input) of the single smooth muscle cells was very close.</p><p><b>CONCLUSION</b>Gap junctional coupling is enhanced in the SHR cerebral arterial smooth muscle cells. 18beta-GA concentration-dependent inhibits Wistar rat's and SHR cerebral arteriolar gap junctions between arterial smooth muscle cells. The inhibitory potency is similar between the two different rats. When 18beta-GA concentration is > or = 100 micromol/L, it can completely block gap junctions between arteriolar smooth muscle cells.</p>


Subject(s)
Animals , Male , Rats , Cerebral Arteries , Cell Biology , Gap Junctions , Glycyrrhetinic Acid , Pharmacology , Muscle, Smooth, Vascular , Cell Biology , Myocytes, Smooth Muscle , Patch-Clamp Techniques , Rats, Inbred SHR , Rats, Wistar
19.
Chinese Journal of Applied Physiology ; (6): 263-266, 2013.
Article in Chinese | WPRIM | ID: wpr-235384

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of ropivacaine on Gamma-aminobutyric acid(GABA)-activated currents in dorsal root ganglion (DRG) neurons in rats and discuss the analgesia mechanism of ropivacaine.</p><p><b>METHODS</b>By means of using whole-cell patch-clamp technique, to investigate the modulatory effects of ropivacaine on GABA-activated currents (I(GABA)) in acutely isolated dorsal root ganglion neurons.</p><p><b>RESULTS</b>(1) In 48 out of 73DRG cells (65.7%, 48/73), to perfusion ropivacaine bromide (0.1 - 1 000 micromol/L) were sensitive. Which produce in 0 to 380 pA current. (2) The majority of the neurons examined (74.5%, 73/98) were sensitive to GABA. Concentration of 1 - 1 000 micromol/L GABA could activate a concentration-dependent inward current, which manifested obvious desensitization, and the inward currents could be blocked byGABA-receptor selective antagonist of bicuculline (100 micromol/L). (3) After the neurons were treated with ropivacaine (0.1 - 1000 micromol/L) prior to the application of GABA (100 micromol/L) 30 s, GABA currents were obviously increased. Ropivacaine could make dose-response curve of the GABA up, EC50 is 23.46 micromol/L. Ropivacaine shifted the GABA dose-response curve upward and increased the maximum response to the contrast about 153%.</p><p><b>CONCLUSION</b>The enhancement of ropivacaine to DRG neurons activation of GABA current, can lead to enhancement of pre-synaptic inhibition at the spinal cord level. This may be one of the reasons for the anesthetic effect and analgesia for ropivacaine in epidural anesthesia.</p>


Subject(s)
Animals , Rats , Amides , Pharmacology , Ganglia, Spinal , Cell Biology , Physiology , Membrane Potentials , Neurons , Cell Biology , Physiology , Patch-Clamp Techniques , Rats, Sprague-Dawley , Receptors, GABA-A , Physiology
20.
Chinese Journal of Applied Physiology ; (6): 25-28, 2013.
Article in Chinese | WPRIM | ID: wpr-358688

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the difference in membrane current of vascular smooth muscle cells (VSMCs) in brain artery (BA) of spontaneously hypertensive rats (SHR) and Wistar rats.</p><p><b>METHODS</b>We compared the properties of spontaneous transient outward K+ currents (STOCs), the density and composition of current of VSMCs in BA of SHR and Wistar rats by whole-cell patch clamp technique.</p><p><b>RESULTS</b>(1) When the command voltage was 0, + 20, + 40 and + 60 mV respectively, the current densities of VSMCs in BA of SHR and Wistar rats were significant different (P < 0.01). (2) The whole-cell current of VSMCs was partly inhibited by 1 mmol/L4-AP (voltage-gated K+ channel blocker) or 1 mmol/L TEA (big conductance Ca(2+)-activated K+ channel blocker) respectively. (3) The frequency and amplitude of STOCs in SHR were faster and bigger than those in Wistar rats. 1 mmol/L TEA almostly inhibited the STOCs, but not by 4-AP.</p><p><b>CONCLUSION</b>These results suggest that the current densities of VSMCs in BA of SHR and Wistar rats are significant different, the outward current of VSMCs in BA of SHR and Wistar rats are composed by Kv and BK(Ca). SHR express more STOCs mediated by BK(Ca), than Wistar rats.</p>


Subject(s)
Animals , Rats , Cerebral Arteries , Cell Biology , Physiology , Membrane Potentials , Physiology , Muscle, Smooth, Vascular , Cell Biology , Physiology , Myocytes, Smooth Muscle , Physiology , Patch-Clamp Techniques , Potassium Channels, Calcium-Activated , Physiology , Potassium Channels, Voltage-Gated , Physiology , Rats, Inbred SHR , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL